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Abstract

We propose a class of velocity interfacial conditions and formulate a finite difference approach for multiscale compu-
tations of crystalline solids with relatively strong nonlinearity and large deformation. Full atomistic computations are per-
formed in a selected small subdomain only. With a coarse grid cast over the whole domain and the coarse scale dynamics
computed by finite difference schemes, we perform a fast average of the fine scale solution in the atomistic subdomain to
force agreement between scales. During each coarse scale time step, we adopt a linear wave approximation around the
interface, with the wave speed updated using the coarse grid information. We then develop a class of velocity interfacial
conditions with different order of accuracy. The interfacial conditions are straightforward to formulate, easy to implement,
and effective for reflection reduction in crystalline solids with strong nonlinearity. The nice features are demonstrated
through numerical tests.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

With the increasing importance of modeling nanoscale structures in science and engineering, there is an
urgent need to develop novel multiscale computational methods that are accurate and efficient [6]. These meth-
ods may greatly broaden the range of spatial and temporal scales for simulations, and substantiate the under-
standing on physics for numerous systems, e.g. [18,20,22]. In the last decade, many multiscale computational
methods have been developed to model materials, including the quasicontinuum method which has been suc-
cessful in simulating static and quasi-static problems [17,26], the coarse-grained molecular dynamics [24], the
bridging scale method [31], the ‘‘macroscopic, atomistic, ab initio dynamics” [4], and the perfectly matched
multiscale simulations [30] to simulate the dynamics. A comprehensive survey may be found in [16].
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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We consider atomistic dynamics for crystalline solids governed by the Newton laws. Same as in the quas-
icontinuum method, the atomistic description is regarded as the ‘‘exact” model of material behavior [17]. In a
multiscale computation, the atomistic dynamics are fully resolved only in a selected localized subdomain,
where the fine scale description is necessary to model the underlying physics properly. A coarse grid represen-
tation is adopted away from there. In this manner, one reduces the degree of freedom, and hence the comput-
ing load considerably.

However, for lattices with relatively strong nonlinearity and large deformation, the accuracy of existing
concurrent multiscale methods are quite limited. Either the coarse grid wave propagations are not well cap-
tured, or reflections occur in the fine scale. The major challenge is an accurate and efficient passage of infor-

mation between the two scales.
There are two aspects for information exchange. First, one supplies the fine scale information to the coarse

scale. Most aforementioned multiscale methods adopt a finite element approach in the coarse scale [26,30,31].
For a multiscale method that uses a handshaking region, the fine scale information is typically passed to the
coarse scale through a weighted average in the mixed Hamiltonian or Lagrangian [1,4,14]. In our approach,
we cast a finite difference grid over the whole computing domain, and adopt a coarse grid scheme designed by
a matching differential operator method [28]. The scheme is explicit, and no algebraic system needs to be
solved. In addition, the finite difference approach is advantageous in capturing the features of wave propaga-
tion. Noticing that solutions exist at both the coarse and fine scales over the atomistic subdomain, we average
the fine scale solution for reassigning the coarse grid values [27,28]. A fast and accurate averaging technique is
presented in Section 2.1.

The other information exchange occurs from the coarse scale to the fine scale. The boundary of an atomistic
subdomain forms an artificial interface. Because an atom at the interface interacts with its neighboring atoms
outside of the atomistic subdomain, we need to approximate the dynamics using the existing information. If
no such approximation is made, there appear strong spurious wave reflections at the interface [31]. Extensive
studies have been carried out to reduce such reflections. For instance, one may design special interfacial con-
ditions using an artificial dissipation or a mixed Hamiltonian [4,19,30]. These methods do not have a clear
error control, and may involve heuristic derivations and empirical parameters.

As an alternative, assuming that the waves are only generated within the atomistic subdomain due to strong
nonlinearities or initial defects, one may reconstruct the fine dynamics of the neighboring atoms. The recon-
struction can be made exact for a linear lattice through a time history treatment [2], which allows a fine scale
wave to go across the interface transparently. This technique was developed for multiscale computations by
Cai et al. [5], and further enhanced with displacement decomposition techniques in [12,13,28,31]. However,
the time history treatment is accurate only for linear lattices. Because of the non-locality in time, it does
not admit a nonlinear generalization. For a crystalline solid with small deformation, one ignores the nonlinear
effects around the interface in the coarse scale, and adopts the interfacial condition corresponding to the lattice
at equilibrium. This introduces error, and the reflection can be large for applications to nonlinear atomistic
systems such as an anharmonic lattice [27,28]. In addition, it is numerically demanding to perform the convo-
lutions. We notice that efforts have been made for local interfacial conditions in [15]. Along the line of [7], the
authors minimize a thermal flux functional with a selected number of time steps and space stencil.

We further remark that for wave propagations in homogeneous media, there are various non-reflecting
boundary conditions [8–11]. They do not apply to the atomistic systems, for which the propagation speed
of a high frequency wave depends on its wave number via the discrete dispersion relationship.

Here we propose a new type of interfacial conditions, namely, velocity interfacial conditions. Briefly speak-
ing, we regard that the fast fluctuations in the short length scale are carried by the long waves, and the long
waves evolve in a slower time scale. Therefore, during each coarse scale time step, the fine scale waves around
the interface are governed by a linearized system, with its parameters determined from the coarse grid solution.
Making use of the uni-directional propagation of the fine scale fluctuations, we factorize the linearized system
to obtain an expression for the velocity in terms of the displacement at several atoms within the atomistic sub-
domain. The dynamics of the interfacial atoms is then described by this velocity formulation, instead of the
original acceleration formulation. We correct the velocity near the interface accordingly. In this way, we obtain
a simple and effective interfacial condition. The linearization and velocity formulation are designed with
required accuracies, and we may reach higher order of accuracy if more computing resources are available.
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Because the condition is local in both space and time, it applies directly to crystalline solids with relatively
strong nonlinearity and large deformation. Compared with [15], our interfacial condition only involves atom-
istic displacements at a single (current) time step, hence no time history memory or treatment is needed.

Designing a coarse grid scheme and an interfacial condition with balanced accuracy, we may obtain an effi-
cient algorithm and reach required overall accuracy. Such a balance is important, as the errors at different
scales contaminate with each other in multiscale simulations [27]. Through numerical examples in one and
two space dimensions, we shall demonstrate that the finite difference approach yields an accuracy comparable
to the pseudo-spectral multiscale method (PMM) in linear systems. For general lattices, PMM is accurate if
and only if the nonlinearity is relatively weak [28]. In contrast, the proposed finite difference approach consid-
erably enhances the resolution for strongly nonlinear systems, and takes a much reduced computing load.

The major features of the finite difference approach are as follows:

� We propose the first finite difference approach for multiscale simulations of crystalline solids with relatively
strong nonlinearity and large deformation. Controllable high accuracy is reached in both scales.
� Adopting a wave view for the lattice dynamics, we propose velocity interfacial conditions that efficiently

reduce reflections for nonlinear lattices.
� Solutions in both scales exist for a selected atomistic subdomain. Coarse grid finite difference schemes cap-

ture long waves accurately with low computing cost. Agreement between scales is forced through reassign-
ment of the coarse grid value by fast averaging the fine scale solution.
� The algorithm is simple, clear, and with low computing load. It is easy for programing, and straightforward

for applications in multiple dimensions.

The rest of this paper is organized as follows. We formulate the finite difference approach and velocity inter-
facial conditions in Section 2. We illustrate the approach through several examples, including a linear system
of harmonic lattice, a nonlinear anharmonic lattice, a lattice with the Lennard-Jones potential in one space
dimension, as well as a Slepyan fracture model in two space dimensions. A flow chart is presented in Section
3. We display the numerical results in Section 4, and make some concluding remarks in the last section. The
matching differential operator method is sketched in an Appendix.

2. General formulation and interfacial conditions

Consider a crystalline solid in X � R3, consisting of na atoms. The position of the nth atom at rest is xn.
Under suitable initial and boundary conditions, the motion of the system is governed by the Newton law:
M€u ¼ f þ fext ð1Þ

with u; f ; fext 2 R3na representing the displacement vector, internal force and external force, respectively. The
mass matrix is M ¼ diagðm1I3�3; . . . ;mna I3�3Þ, where mi > 0. The internal force comes from interatomic inter-
actions. It is described by a potential U depending on the displacement difference for all interacting atoms in
the form of jui � ujj. The internal force reads f ¼ �ruU . Eq. (1) may be expressed componentwise as follows:
mn€un ¼ �
oU
oun
þ fext;n: ð2Þ
We regard the complete atomistic Newton law (2) as an ‘‘exact” description to the lattice dynamics. The goal
of a multiscale computation is a faithful resolution to the dynamics at a much reduced computing load.

A wave type of viewpoint is taken for the lattice dynamics. We regard that time evolution for the displace-
ment at subsequent atoms forms a discrete wave profile. Short waves and long waves interact through the non-
linear terms in (2). For many applications, the influence of short waves is important only within a small
subdomain XA. Away from there, these short waves lay a negligible or homogenizable impact on the long wave
evolution. Accordingly, fine scale computations are not performed away from the subdomain XA. In particu-
lar, we denote XB ¼ X n XA.

We cast a finite difference coarse grid in X. The grid points are denoted as yJ 2 R3. A coarse grid displace-
ment dJ 2 R3 is assigned to represent the motion for atoms around yJ . To compute the coarse scale dynamics,
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we adopt schemes designed by a matching differential operator method. To maintain the agreement with the
fine scale dynamics, we reassign the coarse grid values by averaging the atomistic solution within XA.

Meanwhile, an atom at the interface oXA receives force from adjacent atoms in XB. For such an interfacial
atom, the force depends on the displacement at its adjacent atoms, which are not available in the multiscale
computation. We therefore need to specify the dynamics at the interfacial atoms in a self-contained manner,
that is, an interfacial condition is required. In this study, we allocate an interfacial layer XL � XA with a width
of several atoms. The velocity for atoms in XL is computed from both the atomistic displacement in XA and the
information at the coarse grid points near the interface. The dynamics for XL are governed in terms of the
velocity for reflection reduction, in contrast to that for XD � XA n XL governed by the Newton law in terms
of the acceleration.

We describe the averaging procedure and the interfacial conditions in the following subsections.

2.1. Fast averaging technique

We describe an averaging technique for a one-dimensional lattice. Without loss of generality, we consider a
lattice with the atoms equally distributed at rest. The coarse grid points are equally distributed as well, with a
coarsening ratio p.

In the proposed finite difference approach, the coarse grid displacement d exists over the whole domain.
Meanwhile, fine atomistic solution uA exists in XA. Because of the different meshes and schemes used, deviation
appears and grows between these two solutions if no coupling is forced. It is conceivable that uA represents
better the dynamics in XA. Hence we rectify d at each coarse time step to maintain the agreement between
the two scales.

To this end, we first linearly interpolate d to obtain atomistic displacement in X. That is, we assign
�u ¼ Nd: ð3Þ
Here N is the linear shape function matrix
N ¼

1

a b

. .
. . .

.

a b

2
66664

3
77775 ð4Þ
with a ¼ 1
p ½p � 1; . . . ; 1; 0�T, and b ¼ 1

p ½1; . . . ; p�T.
Next, we rectify displacement in XA. More precisely, for NA and NB the interpolation submatrices corre-

sponding to XA and XB, respectively, we take the linear interpolation in XB and the atomistic solution in
XA to form
u �
uA

N Bd

� �
: ð5Þ
For this u, we compute a new coarse grid displacement ~d. To obtain an optimal coarse grid representation, we
define a global error function ðu� N ~dÞTðu� N ~dÞ. Minimization for the error leads to
~d ¼ M�1
e N Tu ¼ M�1

e N T
uA

NBd

� �
ð6Þ
with a matrix M e ¼ N TN .
This expression uses the inversion for M e, and M�1

e N T is typically a full matrix. In practice, we observe that
most entries in each row are very close to zero. Moreover, the non-negligible entries in a row are almost the
same as in other rows, except for a shift. For example, we take p ¼ 10 and na ¼ 801. The 20th and 40th rows in
M�1

e N T are displayed in Fig. 1a. The difference between these two rows, up to a shift, may be found as small as
10�18. Moreover, for a much smaller atomistic system with 201 atoms, the non-negligible entries are again the
same, with an error on the order of 10�8. See Fig. 1(b).



0 200 400 600 800
–0.05

0

0.05

0.1

0.15

0.2

20th row
40th row

0 50 100 150 200
–0.05

0

0.05

0.1

0.15

0.2

801 atoms
201 atoms

a b

Fig. 1. Averaging technique: (a) two rows in M�1
e NT; (b) the 10th row in M�1

e NT for two atomistic systems of different size.
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The observation suggests us compute M�1
e NT for a much smaller atomistic system. Taking a selected sub-

row for non-negligible entries, we use these entries to average the full atomistic system.
We make a few remarks for implementation of the fast averaging technique.
First, in all the numerical examples presented later, we take ð8p þ 1Þ non-negligible entries for averaging.

This means, for a coarse grid point yJ , we take dJ as a weighted average of the atomistic displacements at the
ð8p þ 1Þ atoms around it.

Secondly, for a coarse grid point near the interface, we are lack of adequate fine scale information from the
side of XB. There are different ways to treat this problem. We may develop an approximate averaging tech-
nique that uses only the information from XA. As a matter of fact, the first and last several rows in M�1

e NT

are not uniform. The non-negligible entries provide weights for an unbalanced average. Again we compute
these entries for a selected small system, and perform unbalanced fast average to obtain the coarse scale dis-
placement at a coarse grid point near the interface. Simulations in two space dimensions presented later are
carried out in this manner. Alternatively, one may simply ignore the reassignment at several such coarse grid
points.

Finally, we remark that the fast averaging technique directly applies to the reassignment for the coarse grid
velocity _d. In two space dimensions, we simply perform the average in one dimension first, and then the other
dimension. A more involved averaging algorithm may also be designed in a similar way by using two-dimen-
sional linear shape functions.

To summarize, we approximate the submatrix of M�1
e NT that corresponds to XA by a sparse matrix CA. We

keep the coarse grid values in XB unchanged, and reassign those in XA by a weighted average, where the
weights are computed from M�1

e NT for a selected small system. Formally, we have
~d ¼
CAuA

dB

� �
: ð7Þ
2.2. Velocity interfacial conditions

Reflection reduction is crucial for multiscale computations. While a coarse grid scheme matters mainly the
quality of the numerical resolution, the reflections directly enter the atomistic subdomain where the physics is
important and nonlinearity may be strong. In the presence of reflection, the solution usually becomes
incorrect.

To reduce the reflection, certain artificial dissipative mechanisms such as damping may be introduced [30].
One may also use a mixed Lagrangian or potential for the two scales [1]. The reflections are then smeared out
or smoothed. These methods usually involve heuristic arguments and empirical parameters, and the accuracy
is not controllable in general. Furthermore, there seems no direct way to perform mathematical analysis on
these methods.
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Another class of methods intend to solve exactly the linear lattice. Assuming that all waves are generated
from the atomistic subdomain, one records the displacement history at the interfacial atoms. Applying the
Laplace transform to the linear lattice, displacements at all atoms in XB may be reconstructed from the time
history information [2,5]. By splitting the displacement into its long wave part (mean displacement) and short
wave part (fine fluctuation), one applies the time history treatment to the fine fluctuation only, and obtains a
better resolution [27,28,31]. In particular, together with a normal mode decomposition and a coarse grid
scheme derived by the matching differential operator method, the pseudo-spectral multiscale method
(PMM) reaches high accuracy for linear lattices. However, there are several major difficulties in applying this
type of methods with the time history treatment. First, the reconstruction involves a convolution, which is
numerically demanding. Secondly, it may take great efforts to compute the kernel functions for convolution
in multiple-dimensional applications [21,23]. Moreover, the vital drawback appears when the time history
treatment is applied to a nonlinear system. Due to the nonlinearity, waves with different length scales interact
with each other. The long wave amplitude may change considerably across the interface as time evolves.
Because the time history treatment is based on linear approximation for the whole cut-off time period, there
is no direct way to generalize this treatment to nonlinear situations. If one blindly adopts the time history
treatment to a nonlinear lattice, reflections appear even all other parts of the algorithm are accurate [28].
We shall describe this difficulty for the bridging scale method (BSM), and PMM through numerical tests with
the anharmonic lattice.

In the following, we propose a velocity interfacial condition. We start with the harmonic lattice. The gen-
eral formulation for nonlinear systems are then illustrated. We also show how to handle multiple dimensions.

2.2.1. A motivating example: velocity interfacial conditions for the harmonic lattice

Consider a harmonic lattice in Fig. 2. The atomistic subdomain XA contains the atoms numbered 1 through
nb. The Newton equation for the nth atom reads
€un ¼ un�1 � 2un þ unþ1: ð8Þ

Imagining zðx; tÞ as a continuous displacement such that unðtÞ ¼ zðxn; tÞ, we perform the Taylor expansion
around un to obtain
o
2

ot2
�
X1
m¼1

2

ð2mÞ!
o

2m

ox2m
h2m

a

" #
z ¼ 0: ð9Þ
Here ha is the atomistic spacing at equilibrium. The differential operator is factorized as follows:
o

ot
þ
X1
i¼1

aih
i
a

o
i

oxi

" #
o

ot
þ
X1
i¼1

bih
i
a

o
i

oxi

" #
z ¼ 0; ð10Þ
where ai and bi are coefficients to be determined.
Regarding ha as a small quantity, we take a1 ¼ �1; b1 ¼ 1 on the leading order. We speculate that the two

factors of the differential operator correspond to the left-going and the right-going waves, respectively. Under
the assumption that waves propagate into XB, where fine fluctuations do not present initially, we find that
o

ot
þ
X1
i¼1

bih
i
a

oi

oxi

" #
z ¼ C0 ð11Þ
with C0 a constant. This implies that for j P 1
Fig. 2. Harmonic lattice in one space dimension.
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o

ot
oj

oxj
z ¼ �

X1
i¼1

bih
iþj
a

oiþj

oxiþj
z: ð12Þ
Substituting this into (10), we deduce after some manipulations that ai ¼ �bi, and
X1
m¼1

2

ð2mÞ!
o2m

ox2m
h2m

a z ¼
X1
i¼1

bih
i
a

oi

oxi

" #2

z: ð13Þ
By equating terms on the same order of ha, we obtain for n 2 N that
Xn

i¼1

bib2nþ1�i ¼ 0;
Xn�1

i¼1

2bib2n�i þ b2
n ¼

2

ð2nÞ! : ð14Þ
Then the coefficients are computed recursively.
Retaining different number of terms, we obtain a class of interfacial conditions with different order of

accuracy.
Second order: Direct calculation shows that b2 ¼ 0. Eq. (11) reads
o

ot
þ ha

o

ox
þ oðh2

aÞ
� �

z ¼ C0: ð15Þ
Neglecting the residual oðh2
aÞ, one obtains precisely the characteristic equation for the linear wave propaga-

tion. If there is no wave initially in XB, we have C0 ¼ 0 and
o

ot
þ ha

o

ox

� �
z ¼ oðh2

aÞ: ð16Þ
It suggests an interfacial condition in the continuous form as follows:
_z ¼ �ha
o

ox
zþ oðh2

aÞ: ð17Þ
Applying this at the nbth atom, we obtain an expression for the velocity by taking an upwind discretization of
zx:
_unb ¼ unb�1 � unb : ð18Þ

This is a first-order velocity interfacial condition, because the truncation error is on the order of oðh2

aÞ in the
upwind approximation. We remark that this corresponds to the continuous non-reflecting boundary condition
in the pioneering work by Engquist and Majda [8].

The interfacial condition (18) dissipates waves from XA. To see this, we define a total energy
EðtÞ ¼ 1

2

Xnb�1

n¼1

_u2
n þ

1

2

Xnb�1

n¼1

ðunþ1 � unÞ2: ð19Þ
If we impose a fixed end u1 ¼ 0, then we derive from the Newton law (8) that
dE
dt
¼
Xnb�1

n¼1

_un€un þ
Xnb�1

n¼1

ðunþ1 � unÞð _unþ1 � _unÞ

¼ _unbðunb � unb�1Þ
¼ �ðunb � unb�1Þ2:

ð20Þ
The energy decreases as long as unb � unb�1 6¼ 0.
We make a few remarks.
First, though condition (18) is dissipative, it is not an optimal condition. When this condition is applied,

reflection occurs and propagates back to XA, leaving unb � unb�1 	 0.
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Secondly, condition (18) assigns the velocity rather than the displacement for the interfacial atom. To
obtain the displacement unb , we integrate it numerically.

Thirdly, the accuracy may be readily enhanced to oðh2
aÞ. Let D1 ¼ unb � unb�1;D2 ¼ unb � unb�2. We solve

from the Taylor expansions
D1

D2

� �
¼

1 1

2 4

� � hazx

h2
a

2
zxx

" #
þ oðh2

aÞ; ð21Þ
that
hazx

h2
a

2
zxx

" #
¼

2 �1=2

�1 1=2

� �
D1

D2

� �
þ oðh2

aÞ: ð22Þ
Combining (17) and (22), we design a second-order velocity interfacial condition
_unb ¼
1

2
ð�unb�2 þ 4unb�1 � 3unbÞ: ð23Þ
This condition has a smaller truncation error, and involves one more atom compared with (18).
Finally, with the displacements unb�2; unb�1 and unb , we may also rectify the velocity at the next atom to the

same order of accuracy:
_unb�1 ¼
1

2
ðunb�2 � unbÞ: ð24Þ
Noticing that unb�2; unb�1 and unb locate at the downwind side for the ðnb � 2Þth atom, we do not correct _unb�2

with these three displacements.
Higher orders: From (14), we compute that b2n ¼ 0 and b1 ¼ 1; b3 ¼ 1=24; b5 ¼ 1=192. The fourth-order

condition reads
_z ¼ �ha
o

ox
z� h3

a

24

o3

ox3
zþ oðh4

aÞ: ð25Þ
To design a discrete interfacial condition, we consider the Taylor expansions of Di ¼ unb�i � unb for
i ¼ 1; 2; 3; 4:
D1

D2

D3

D4

2
6664

3
7775 ¼

�1 1 �1 1

�2 4 �8 16

�3 9 �27 81

�4 16 �64 256

2
6664

3
7775

hazx

h2
a

2
zxx

h3
a

6
zxxx

h4
a

24
zxxxx

2
666664

3
777775þ oðh4

aÞ: ð26Þ
It is solved by
hazx

h2
a

2
zxx

h3
a

6
zxxx

h4
a

24
zxxxx

2
666664

3
777775 ¼

�4 3 �4=3 1=4

�13=3 17=4 �7=3 11=24

�3=2 2 �7=6 1=4

�1=6 1=4 �1=6 1=24

2
6664

3
7775

D1

D2

D3

D4

2
6664

3
7775þ oðh4

aÞ: ð27Þ
Together with (25), this leads to a fourth-order condition:
_unb ¼ �
5

16
unb�4 þ

13

8
unb�3 �

7

2
unb�2 þ

35

8
unb�1 �

35

16
unb : ð28Þ
In the same way, we rectify velocities at the next two atoms as follows:
_unb�1 ¼
1

16
unb�4 �

3

8
unb�3 þ

5

4
unb�2 �

5

8
unb�1 �

5

16
unb ; ð29Þ

_unb�2 ¼ �
1

16
unb�4 þ

5

8
unb�3 �

5

8
unb�1 þ

1

16
unb : ð30Þ
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Velocities at atoms further inside XA are not corrected, due to considerations on the wave propagation
direction.

2.2.2. Interfacial conditions for nonlinear lattices
Nonlinearity exists in most applications. For a nonlinear system, an exact interfacial condition requires

precise expression for the solution, which is not accessible in general. Because other existing interfacial
treatments are less accurate even for the linear lattices, we discuss here only the time history treatment.
If the nonlinearity is weak, one may adopt an interfacial condition corresponding to the linear lattice at
equilibrium [5,28,31]. This introduces an error. When the nonlinearity is strong, the error can be large.
Because a long time history is necessary for performing convolutions, one can not update the time history
kernel within the cut-off period. Moreover, the kernel function is hard to compute when the lattice is away
from the uniform equilibrium.

In contrast, the velocity interfacial conditions developed in the last subsection are local in both space and
time. At any fixed time, an atom near the interface experiences the lattice approximately as a linear one with a
uniform strain, which is determined by the coarse scale displacement at these several grid points around the
interface. This suggests a treatment using a linearized lattice
€un ¼ c2ðtÞðun�1 � 2un þ unþ1Þ; ð31Þ

where cðtÞ is computed through dJ ’s near the interface. There are various ways to compute cðtÞ. For instance,
we may decompose the acceleration term in the Newton law into the multiplication of a factor
un�1 � 2un þ unþ1, and another factor approximated by the dJ ’s. Alternatively, we may perform the Taylor
expansion to find the coefficient for uxx, and approximate the coefficient in terms of dJ ’s.

When the lattice is at equilibrium in XB initially, the velocity interfacial condition for the nonlinear lattice is
taken as follows:
_unb�2

_unb�1

_unb

2
64

3
75 ¼ cðtÞ

�1=16 5=8 0 �5=8 1=16

1=16 �3=8 5=4 �5=8 �5=16

�5=16 13=8 �7=2 35=8 �35=16

2
64

3
75

unb�4

unb�3

unb�2

unb�1

unb

2
6666664

3
7777775
: ð32Þ
An anharmonic lattice: With a parameter K characterizing the nonlinearity, the Newton law for nth atom is
€un ¼ un�1 � 2un þ unþ1 þ
K

h2
a

ðunþ1 � unÞ3 � ðun � un�1Þ3
h i

: ð33Þ
We notice that
ðunþ1 � unÞ3 � ðun � un�1Þ3 ¼ ðunþ1 � 2un þ un�1Þ½ðunþ1 � unÞ2 þ ðunþ1 � unÞðun � un�1Þ þ ðun � un�1Þ2�:
ð34Þ
For the anharmonic lattice (33), we take
c2
AHðtÞ ¼ 1þ 3KðdJþ1 � dJ Þ2

p2h2
a

: ð35Þ
The lattice with the Lennard-Jones potential: The governing equation for the displacement un is
€un ¼ �48½ðr0 þ unþ1 � unÞ�13 � ðr0 þ un � un�1Þ�13� þ 24½ðr0 þ unþ1 � unÞ�7 � ðr0 þ un � un�1Þ�7�: ð36Þ

Here r0 ¼ 21=6 is the atomic distance at rest. After some manipulations, we find
�ðr0 þ unþ1 � unÞ�k þ ðr0 þ un � un�1Þ�k ¼ ðunþ1 � 2un þ un�1Þ
Xk�1

l¼0

ðr0 þ unþ1 � unÞ�kþlðr0 þ un � un�1Þ�1�l
:

ð37Þ
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We approximate c2ðtÞ by
c2
LJðtÞ ¼ 624½r0 � ðdJþ1 � dJ Þ=p��14 � 168½r0 � ðdJþ1 � dJ Þ=p��8

: ð38Þ
2.2.3. A multi-dimensional example – the Slepyan model for fracture

A Slepyan model describes dynamic Mode III fracture in a square lattice [25]. With a damping coefficient
b P 0, the displacement out of the lattice plane uij is governed by
€uij ¼ �b _uij þ
X
i0 ;j0
ðui0j0 � uijÞHð2� jui0j0 � uijjÞ: ð39Þ
Here H denotes the Heaviside step function. Away from the fracture, the lattice is harmonic in both dimen-
sions. One may allocate an atomistic subdomain XA so that the fluctuations (short waves) propagate along the
normal direction of the interface. A one-dimensional interfacial condition then applies across the interface.

However, for more general situations, we need to determine the wave propagation direction. To this end, let
us consider a continuous linear wave equation
utt ¼ h2
aðuxx þ uyyÞ: ð40Þ
For a plane wave uðx; y; tÞ ¼ uðx cos aþ y sin a� ctÞ with an incline angle a, we compute
utx ¼ �cu00 cos a; uty ¼ �cu00 sin a: ð41Þ

We determine the angle a from the velocity gradient by
tan a ¼ uty

utx
: ð42Þ
We rotate the axes to ðn; gÞ coordinates by the angle a. The Laplacian remains in the same form, and Eq. (40)
becomes
utt ¼ h2
aðunn þ uggÞ: ð43Þ
Because the wave propagates along n-direction, it solves a one-dimensional equation
utt ¼ h2
aunn: ð44Þ
A first-order velocity interfacial condition is derived in continuous form:
_uþ ha
o

on
u ¼ C: ð45Þ
Back to the original coordinates, we take
_uþ haðux cos aþ uy sin aÞ ¼ C: ð46Þ

This motivates velocity interfacial conditions in a multiscale computation as follows.

First, as previously mentioned, the fine scale oscillations are carried by the long waves in the coarse scale.
Therefore, we compute the angle from the coarse grid velocity, e.g.
tan a ¼
_dI ;Jþ1 � _dI ;J�1

_dIþ1;J � _dI�1;J

: ð47Þ
Secondly, we design velocity interfacial conditions along each dimension with required order of accuracy.
Finally, we superpose the conditions with the coefficients cos a and sin a.
More precisely, let the interface lies horizontally at the jth layer in the fine scale, and between the Jth layer

and the ðJ þ 1Þth layer in the coarse grid. For each i, a fourth-order velocity interfacial condition reads
_ui;j�2

_ui;j�1

_ui;j

2
64

3
75 ¼ cos a

ui�2;j�2 ui�1;j�2 uiþ1;j�2 uiþ2;j�2

ui�2;j�1 ui�1;j�1 uiþ1;j�1 uiþ2;j�1

ui�2;j ui�1;j uiþ1;j uiþ2;j

2
64

3
75
�1=16

5=8

�5=8

1=16

2
6664

3
7775
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þ sin a

�1=16 5=8 0 �5=8 1=16

1=16 �3=8 5=4 �5=8 �5=16

�5=16 13=8 �7=2 35=8 �35=16

2
64

3
75

ui;j�4

ui;j�3

ui;j�2

ui;j�1

ui;j

2
6666664

3
7777775
: ð48Þ
We remark that if the displacement is non-zero initially, a certain constant may be computed and added to the
right-hand side.
2.2.4. Summary
Depending on the number of atoms that we rectify the velocities, we allocate an interfacial layer XL � XA.

Let the dynamics for atoms in XL being described by ðuL; _uLÞ, and that for atoms in XD ¼ XA n XL by ðuD; _uDÞ.
We formulate a matrix CI and a velocity interfacial condition in terms of
_uL ¼ CIuA: ð49Þ
3. Numerical implementation

3.1. Time integration

For time integration of both the atomistic computations of uD and the coarse grid computations of d, we
adopt a verlet algorithm. We illustrate this algorithm for €q ¼ F ðq; tÞ.

For a time step size Dt and data qðtlÞ ¼ ql; _qðtlÞ ¼ _ql, we compute
qlþ1 ¼ ql þ _qlDt þ F ðql; tlÞ ðDtÞ2

2
; ð50Þ

_qlþ1 ¼ _ql þ Dt
2
ðF ðql; tlÞ þ F ðqlþ1; tlþ1ÞÞ: ð51Þ
For the multiscale computations, we use a mixed time integration technique. That is, we take a time step size
Ds for computing uA, and Dt ¼ mDs for computing d ðm 2 NÞ.

Furthermore, in the interfacial layer XL, we simulate the dynamics by
ulþ1
n ¼ ul

n þ
Ds
2
ð _ul

n þ _ulþ1
n Þ; ð52Þ
where the velocities _ul
n and _ulþ1

n are obtained through the velocity interfacial conditions (49).
3.2. A flow chart

We summarize the finite difference approach in the following list. Please refer to Fig. 3 for
illustration:

1. Atomistic computation in XA

� With the coarse grid displacement d and velocity _d around the interface at current coarse time step tl,
compute the wave propagation coefficient cðtÞ, and the direction in case of multiple dimensions. Form
the matrix CI to be used in the velocity interfacial conditions (49).

� At each sub-time step tl þ jDs ðj ¼ 1; . . . ;mÞ, we compute the fine scale dynamics from a subsystem of
(1) and the velocity interfacial conditions:
MD€uD ¼ fD þ fext;D; ð53Þ
_uL ¼ CIuA: ð54Þ



Fig. 3. Illustration of the computing mesh.
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2. Coarse grid computation
� We compute ðdlþ1; _dlþ1Þ with the scheme designed by the matching differential operator method (62)
€d ¼ AðdÞ: ð55Þ
� Making use of the fine scale solution at tlþ1 ¼ tl þ mDs, we reassign the coarse grid displacement and

velocity by (7)

CAulþ1
A

dlþ1
B

" #
! dlþ1;

CA _ulþ1
A

_dlþ1
B

" #
! _dlþ1: ð56Þ
3.3. Computational costs

The computational costs for each time step Dt mainly consist of four parts. First, the time integration for
atoms in XA causes a computing load on the order of OðmnAÞ, with nA the number of atoms in this subdomain.
Secondly, the interfacial conditions result in a computing load on the order of oðmnAÞ. Thirdly, the time inte-
gration for coarse grid values requires OðnCÞ computations for the nC coarse grid points. Finally, the reassign-
ment for the coarse grid values within XA results in OðnAÞ computations. Summing them together, we obtain
the total computing cost at a time step Dt as OðmnA þ nCÞ. As a matter of fact, the computational cost is at
least on this order for a concurrent multiscale simulation.

In contrast, an atomistic simulation for the entire system yields a computing load on the order of OðmnaÞ.
The total atom number na is typically much larger than nA and nC.

To make further comparisons, we remark that PMM and the bridging scale method yield computational
costs on the order of OðnC log nC þ m 
 ðnGðnH þ log nGÞ þ nAÞÞ and OðnC þ m 
 ðnGnH þ nAÞÞ, respectively
[28]. Here nG denotes the number of ghost point atoms, and nHs is the length for the cut-off time, which should
be chosen big enough to maintain the accuracy.

On the other hand, most finite element approaches result in algebraic systems, requiring additional compu-
tations and memory.

In summary, the proposed finite difference approach requires a much reduced computing load, compared
with either the full atomistic computation, or other concurrent multiscale methods. We shall demonstrate in
the next section that it reaches an accuracy comparable to PMM in case of linear systems. It considerably
enhances the performance for nonlinear systems.

4. Numerical results

To demonstrate the nice features of the proposed finite difference approach, we present some numerical
results for the harmonic lattice, the anharmonic lattice, the lattice with the Lennard-Jones potential, as well
as the Slepyan model for fracture. We make comparisons with computations by full atomistic simulations,
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the accurate yet more expensive pseudo-spectral multiscale method (PMM), the less accurate bridging scale
method (BSM) [27] and the perfectly matched multiscale simulations (PMMS) [30]. In the following, we shall
refer to the exact solution u as the one obtained from the full atomistic simulation. Meanwhile, for the mul-
tiscale computations, we use uA to denote a solution by the atomistic computation in XA, and d to represent
that by coarse grid computation in X.

Real applications typically have a much larger degree of freedom than the numerical examples reported in
this paper. Therefore, the advantages in accuracy and numerical efficiency would be much more significant
when one adopts multiscale methods, and particularly the proposed finite difference approach.

4.1. Harmonic lattice

We use the harmonic lattice to test the multiscale methods.
In the numerical simulations, we take ha ¼ 0:005 and p ¼ 10. The initial condition is given by unð0Þ ¼ u0ðxnÞ

with
u0ðxÞ ¼ 0:005 e�100x2�e�6:25

1�e�6:25 ð1þ 0:1 cosð80pxÞÞ; for jxj 6 0:25;

0; elsewhere:

(
ð57Þ
The computations are performed with a fine grid time step size Ds ¼ 0:005 for ðx; tÞ 2 ½�2; 2� � ½0; 150�. In all
the multiscale computations, we take an atomistic subdomain XA ¼ ½�0:375; 0:375�, and a coarse grid time
step size Dt ¼ 0:05.

It is known that a wave propagates at a finite speed, and the lattice is essentially at equilibrium away from
such waves. Further noticing the symmetry x! �x in the system, we plot solutions only in part of the com-
puting domain.

First, we depict the numerical results by the finite difference approach with the MDO-4 scheme for the
coarse grid and the fourth-order velocity interfacial condition. In Fig. 4, we display four snapshots for the
solution at t = 50, 100, 130 and 150. The initial data contain mainly a long smooth wave and a short oscilla-
tory wave. Both waves locate inside the atomistic subdomain XA initially. Because of the dispersion, the oscil-
latory part moves slower. At t ¼ 50, the long wave starts to go across the interface between XA and XB. In the
next subplot for t ¼ 100, the long wave mainly lies in XB, and the short wave is going across the interface.
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Fig. 4. Harmonic lattice by the finite difference approach: (a) uðx; 50Þ; (b) uðx; 100Þ; (c) uðx; 130Þ; (d) uðx; 150Þ.



S. Tang / Journal of Computational Physics 227 (2008) 4038–4062 4051
Later at t ¼ 130 and t ¼ 150, the short wave leaves XA. From the figure, we observe that the exact solution u is
faithfully reproduced in both XA and XB by the finite difference approach. The numerical reflection in XA at
t = 130 or 150 is very small.

In contrast, if we take the second-order velocity interfacial condition instead, the reflection in XA increases.
See Fig. 5. The reflection is negligible in the early stages, e.g. in subplots (a) and (b). An observable reflected
wave is shown in subplot (c), after the short wave goes across the interface. It propagates back toward XA, as
seen in subplot (d).

The resolution by PMM (pseudo-spectral multiscale method) in Fig. 6 is comparable to that by the finite
difference approach with the fourth-order velocity interfacial condition. We notice that PMM is numerically
more expensive, particularly due to the convolution for treating the interfaces.

BSM (bridging scale method) produces larger reflections in XA and observable deviation in the coarse grid
points over XB, as shown in Fig. 7. It is known that even with a more accurate coarse grid scheme, the reflec-
tions are not reduced. The reflection is mainly due to an inaccuracy in the interfacial condition with the lin-
ear displacement decomposition. More detailed analysis on numerical costs and error study may be found in
[27].

PMMS (perfectly matched multiscale simulations) gives a resolution slightly better than BSM [30]. Yet it is
crucial for such a good resolution to carefully tune the artificial parameters. The reflection may be much larger
if the parameters are not chosen properly, or the PML (perfectly matched layer) width is not big enough. In
this simulation 20 atoms are taken near each interface. In contrast, the finite difference approach only assigns
an interfacial layer of 3 atoms for the fourth-order velocity interfacial condition. Furthermore, because a lin-
ear element is used for the coarse scale computations, the propagating speed of the long wave exceeds that for
the exact solution. See Fig. 8. We remark that the coarse grid resolution may be enhanced by coupling the
PML idea with the coarse grid schemes derived by the matching differential operator method [32].

We illustrate the detailed numerical reflections for the aforementioned multiscale methods in Fig. 9. We
observe that the fourth-order velocity interfacial condition produces a reflection on the same order of magni-
tude as PMM, while the second-order velocity interfacial condition is comparable to BSM. The result by
PMMS gives a reflection with an amplitude in between. We also observe that the reflections by the proposed
finite difference approach are in the form of a wave package containing both short and long waves. The results
by PMM and BSM, in contrast, mainly contain the long wave components.
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Fig. 5. Harmonic lattice by the finite difference approach with the second-order velocity interfacial condition: (a) uðx; 50Þ; (b) uðx; 100Þ; (c)
uðx; 130Þ; (d) uðx; 150Þ.
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Fig. 6. Harmonic lattice by PMM: (a) uðx; 50Þ; (b) uðx; 100Þ; (c) uðx; 130Þ; (d) uðx; 150Þ.
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Fig. 7. Harmonic lattice by bridging scale method: (a) uðx; 50Þ; (b) uðx; 100Þ; (c) uðx; 130Þ; (d) uðx; 150Þ.
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4.2. Nonlinear lattices in one space dimension

4.2.1. Anharmonic lattice

In the following, we make comparisons for the finite difference approach, BSM and PMM. The parameter
K represents the strength of nonlinearity. In this study, we show the results for K ¼ 30 and K ¼ 50. The initial
data (57) contain a wave on the order of ha ¼ 0:005, and these two cases correspond to fairly strong nonlin-
earity. In a previous study of the same problem by PMM, the nonlinearity parameter was chosen as K ¼ 10
[28].
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Fig. 8. Harmonic lattice by the perfectly matched multiscale simulations method: (a) uðx; 50Þ; (b) uðx; 100Þ; (c) uðx; 130Þ; (d) uðx; 150Þ.
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dotted), and perfectly matched multiscale simulations (solid).
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Snapshots for the simulations with K ¼ 30 are shown in Fig. 10 for the finite difference approach, in
Fig. 11 for BSM, and in Fig. 12 for PMM, respectively. With the same initial profile as for the harmonic
lattice, the long wave deforms by sharpening the gradient. The short wave also deforms. Furthermore, there
is a certain amount of energy left in XA when the major waves propagate away. From the figures, we
observe that the finite difference approach treats well the nonlinearity, and the numerical solutions are indis-
tinguishable from the exact solution in XA. In contrast, numerical reflections appear for BSM and PMM
when the short wave propagates out of XA in the corresponding subplots (b) and (c), leaving a much higher
energy in XA afterwards in the corresponding subplots (d). The BSM solution outside of XA deviates from
the exact solution in terms of a kink ahead of the true wave, similar to the computation with harmonic
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Fig. 10. Anharmonic lattice with K ¼ 30 by finite difference approach: (a) uðx; 50Þ; (b) uðx; 100Þ; (c) uðx; 130Þ; (d) uðx; 150Þ.
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Fig. 11. Anharmonic lattice with K ¼ 30 by BSM: (a) uðx; 50Þ; (b) uðx; 100Þ; (c) uðx; 130Þ; (d) uðx; 150Þ.
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lattice. Reflection at the interface is stronger than that in the PMM computation, as observed in subplots
(b) and (c). In fact, both PMM and BSM adopt a time history kernel function corresponding to the har-
monic lattice at equilibrium, generating large error in the stage when the nonlinear term dominates the
evolution.

When we further increase the nonlinearity parameter to K ¼ 50, the difference between these methods
increases. The nonlinearity is so strong that the coarse grid solution has an obvious phase delay in the tail
of the long wave (see Fig. 13). The coarse grid solution near the interface is elevated in both BSM and
PMM due to the reflection error in XA, as displayed in subplots (c) and (d) of Figs. 14 and 15.
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Fig. 12. Anharmonic lattice with K ¼ 30 by PMM: (a) uðx; 50Þ; (b) uðx; 100Þ; (c) uðx; 130Þ; (d) uðx; 150Þ.
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Fig. 13. Anharmonic lattice with K ¼ 50 by finite difference approach: (a) uðx; 50Þ; (b) uðx; 100Þ; (c) uðx; 130Þ; (d) uðx; 150Þ.
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4.2.2. Lattice with the Lennard-Jones potential

The Lennard-Jones potential has wide applications. The strength of nonlinearity is related to the magnitude
of the displacement.

We compute by the finite difference approach for two set of initial profiles in X ¼ ½�200r0; 200r0� with 41
coarse grid points ðp ¼ 10Þ, and XD ¼ ½�55r0; 55r0� with 111 atoms. The time step sizes are Ds ¼ 0:001 and
Dt ¼ 0:01 for the fine and coarse scales, respectively.

The numerical results for initial data
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Fig. 14. Anharmonic lattice with K ¼ 50 by BSM: (a) uðx; 50Þ; (b) uðx; 100Þ; (c) uðx; 130Þ; (d) uðx; 150Þ.
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uðxÞ ¼ 0:015 e�ðx=20Þ2�e�25

1�e�25 ð1þ 0:2 cosð2px=5ÞÞ; if jxj < 100;

0; elsewhere;

(
ð58Þ
are depicted in Figs. 16 and 17. The multiscale computation agrees with the exact solution very well. Because
the nonlinearity is not very strong for this setting, the performance of BSM is not much worse. Nevertheless,
we notice obvious numerical error in XB.
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Fig. 16. Lattice with the Lennard-Jones potential by the finite difference approach (solid lines for the exact solution, stars and circles for
the multiscale solution): (a) uðx; 5Þ; (b) uðx; 10Þ; (c) uðx; 13Þ; (d) uðx; 20Þ.
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Fig. 17. Lattice with the Lennard-Jones potential by BSM (solid lines for the exact solution, stars and circles for the multiscale solution):
(a) uðx; 5Þ; (b) uðx; 10Þ; (c) uðx; 13Þ; (d) uðx; 20Þ.
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For an initial profile with a larger deformation, the nonlinearity increases. For instance, we compute with
uðxÞ ¼ 0:15 e�ðx=20Þ2�e�25

1�e�25 ð1þ 0:1 cosð2px=5ÞÞ; if jxj < 100;

0; elsewhere:

(
ð59Þ
The numerical results in Fig. 18 still agree well with the exact solution. We remark that linear elasticity usually
requires a strain below 1%. In this test, the strain is over 8%. In contrast, numerical results by BSM contain
considerable wave reflection in XA and inadequate resolution at coarse grid in Fig. 19.
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Fig. 18. Lattice with the Lennard-Jones potential by the finite difference approach (solid lines for the exact solution, stars and circles for
the multiscale solution): (a) uðx; 5Þ; (b) uðx; 10Þ; (c) uðx; 13Þ; (d) uðx; 20Þ.
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Fig. 19. Lattice with the Lennard-Jones potential by BSM (solid lines for the exact solution, stars and circles for the multiscale solution):
(a) uðx; 5Þ; (b) uðx; 10Þ; (c) uðx; 13Þ; (d) uðx; 20Þ.
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4.3. The Slepyan model for fracture in two space dimensions

We take a computing domain X with 257� 513 atoms. The exact solution is computed by a full atomistic
computation, with a time step size Ds ¼ 0:05. Parameters include the damping coefficient b ¼ 0:01, the coars-
ening ratios px ¼ py ¼ 8, XA ¼ ½1; 257� � ½178; 335�, and the coarse scale time step size Dt ¼ 0:5.

We compute with an initial profile that contains a crack between the 256th and 257th layers, from the first
atom to the 48th atom in the x-direction. The initial displacement and subsequent evolution are shown in
Fig. 20.
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Fig. 20. Coarse grid displacement in Slepyan model: (a) uðx; 0Þ; (b) uðx; 20Þ; (c) uðx; 40Þ; (d) uðx; 80Þ.
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Fig. 21. Displacement in Slepyan model at t ¼ 80: (a) coarse grid solution by the finite difference approach; (b) atomistic computation in
XA by the finite difference approach; (c) the exact solution; (d) the exact solution in XA.
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To compare the multiscale computation with the full atomistic solution, we display the two results at t ¼ 80
in Fig. 21 for comparison. Differences in displacements are almost indiscernible, both in the coarse grid and in
XA. We remark that with such a thin strip for the atomistic region, the proposed method gives a convergent
and accurate resolution for the fracture. On the other hand, it has been noticed that the bridging scale method
may cause divergent results if the atomistic subdomain is not large enough [21].
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5. Discussions

In this paper, we have proposed a finite difference approach for multiscale simulation of crystalline solids
with relatively strong nonlinearity and large deformation. The controllable high accuracy in the coarse grid is
reached with finite difference schemes, together with a fast averaging of the atomistic solution. The coarse grid
algorithm efficiently captures the long wave dynamics.

In the atomistic subdomain, a class of velocity interfacial conditions have been proposed. Regarding the long
waves as carriers for the fine fluctuations, we relate the velocities at several atoms near the interface to the atom-
istic displacement. The interfacial conditions describe the uni-directional wave propagation, hence enable the
fluctuations to propagate out of XA with the reflections effectively reduced. Moreover, the long waves determine
the coefficient and propagation direction for the linearized uni-directional wave system. The formulation of the
interfacial condition is local in both space and time, effective for nonlinear lattices and in multiple dimensions.
We remark that the coarse grid schemes, the fast averaging technique, and the velocity interfacial conditions
may be adopted separately. For instance, one may incorporate the velocity interfacial condition for the atom-
istic computation with an existing finite element code for the coarse grid continuum.

The overall approach is clear and simple, easy for implementation. With a low computing load, it reaches
high balanced accuracy in both scales. For example, it is comparable to the much more expensive PMM in
linear lattices.

There are various aspects for further explorations of the finite difference approach. In particular, we shall
explore the application of the current method to dislocation dynamics with a phonon heat bath [29]. Appli-
cations to more general situations, such as fluid systems are also under consideration.
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Appendix. Matching differential operator method

Imagine that there is an intermediate continuous variable zðx; tÞ for x 2 X. The atomistic displacement u and
the coarse grid displacement d are regarded as discrete approximations to zðx; tÞ with different resolutions,
namely, unðtÞ � zðxn; tÞ; dJ ðtÞ � zðyJ ; tÞ. Let ha be the atomistic spacing at rest, and the required order of accu-
racy be oðhl

aÞ. If the atomistic dynamics (1) and the coarse grid scheme have the same modified equation in
terms of zðx; tÞ up to the order oðhl

aÞ, we may expect that the consistency between u and an interpolation of
d is on the same order. The coarse grid scheme is then called an MDO-l scheme for ease of presentation.

To be more precise, we perform the Taylor expansion to the displacement difference for two interacting
atoms: � �
jui � unj ¼ jzðxi; tÞ � zðxn; tÞj ¼
X

16jaj6l

Dazðxn; tÞ
ðxi � xnÞa

a!

����
����þ oðhl

aÞ: ð60Þ
Here the multiple index convention is used. Because only the displacement difference is involved in the poten-
tial U, we may perform the Taylor expansion to (2) and formally write the resulted modified equation
mðxÞztt ¼ KlðrxzÞ þ oðhl
aÞ ð61Þ
with Kl a nonlinear operator.
Selecting suitable functions and parameters, we may design a finite difference scheme on the coarse grid in

terms of
€d ¼ AðdÞ ð62Þ

for which the Taylor expansion matches (61) to the same order of truncation error. The nonlinear vector func-
tion AðdÞ is chosen to depend only on the coarse grid displacement differences in the form of jdI � dJ j.
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We notice that a delicate procedure has been proposed to coarsen the potential by using the Taylor expan-
sion technique [3]. A coarse scale scheme may be designed using the coarsened potential. We further remark
that the choice for AðdÞ is not unique in general. Mathematical and physical intuitions are used to guide the
design. A few examples are as follows.

In one space dimension, we let p be the coarsening ratio.
Harmonic lattice (8)
€dJ ¼ K4;J d � K2;J d � p2 � 1

12p4
dJ�2 � 4dJ�1 þ 6dJ � 4dJþ1 þ dJþ2ð Þ: ð63Þ
Anharmonic lattice (33)
€dJ ¼ K4;J d þ K

h2
ap4
ðdJþ1 � dJ Þ3 � ðdJ � dJ�1Þ3
h i

� Kðp2 � 1Þ
4h2

ap6
� ½ðdJþ1 � dJ�1Þ2ðdJ�2 � 4dJ�1 þ 6dJ

� 4dJþ1 þ dJþ2Þ=4þ ðdJ�1 � 2dJ þ dJþ1Þ3 þ 2ðdJþ1 � dJ�1ÞðdJ�1 � 2dJ þ dJþ1Þ � ð�dJ�3

þ 4dJ�2 � 5dJ�1 þ 5dJþ1 � 4dJþ2 þ dJþ3Þ�: ð64Þ
Lattice with Lennard-Jones potential (36)
€dJ ¼ �
48

p
r0 þ

dJþ1 � dJ

p

� ��13

� r0 þ
dJ � dJ�1

p

� ��13
" #

þ 24

p
r0 þ

dJþ1 � dJ

p

� ��7

� r0 þ
dJ � dJ�1

p

� ��7
" #

þ ðp
2 � 1Þð�52r�14

0 þ 14r�8
0 Þ

p4
ðdJ�2 � 4dJ�1

þ 6dJ � 4dJþ1 þ dJþ2Þ: ð65Þ
In two space dimensions, we denote the coarsening ratios px and py in the x and y dimensions, respectively. For
the Slepyan model (39), a coarse grid MDO-4 scheme reads
€dIJ ¼ �b _dIJ þ
1

p2
x

ðdI�1;J � 2dIJ þ dIþ1;J Þ þ
1

p2
y

ðdI;J�1 � 2dIJ þ dI ;Jþ1Þ �
p2

x � 1

12p4
x

ðdI�2;J � 4dI�1;J

þ 6dIJ � 4dIþ1;J þ dIþ2;J Þ �
p2

y � 1

12p4
y

ðdI;J�2 � 4dI ;J�2 þ 6dIJ � 4dI;Jþ1 þ dI ;Jþ2Þ: ð66Þ
We further remark that the MDO approach uses Taylor expansion to design coarse grid approximations for
the atomistic Newton laws. This allows a direct application to more complex situations, such as non-nearest
neighboring interaction, or multi-dimensional lattice structures. For an example, in a Lennard-Jones type of
potential, we may make the following approximation with s an integer. A coarse grid scheme may be obtained
by summing over terms in this form:
ðsr0 þ unþs � unÞ�k � ðsr0 þ un � un�sÞ�k

� s�ðk�1Þ 1

p
r0 þ

dJþ1 � dJ

p

� ��k

� r0 þ
dJ � dJ�1

p

� ��k
" #(

þ kr�ðkþ1Þ
0 ðp2 � s2Þ

12p4
dJ�2 � 4dJ�1 þ 6dJ � 4dJþ1 þ dJþ2ð Þ

)
: ð67Þ
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